Optimizing Double-Base Elliptic-Curve Single-Scalar Multiplication
نویسندگان
چکیده
This paper analyzes the best speeds that can be obtained for single-scalar multiplication with variable base point by combining a huge range of options: – many choices of coordinate systems and formulas for individual group operations, including new formulas for tripling on Edwards curves; – double-base chains with many different doubling/tripling ratios, including standard base-2 chains as an extreme case; – many precomputation strategies, going beyond Dimitrov, Imbert, Mishra (Asiacrypt 2005) and Doche and Imbert (Indocrypt 2006). The analysis takes account of speedups such as S − M tradeoffs and includes recent advances such as inverted Edwards coordinates. The main conclusions are as follows. Optimized precomputations and triplings save time for single-scalar multiplication in Jacobian coordinates, Hessian curves, and tripling-oriented Doche/Icart/Kohel curves. However, even faster single-scalar multiplication is possible in Jacobi intersections, Edwards curves, extended Jacobi-quartic coordinates, and inverted Edwards coordinates, thanks to extremely fast doublings and additions; there is no evidence that double-base chains are worthwhile for the fastest curves. Inverted Edwards coordinates are the speed leader.
منابع مشابه
Fast elliptic scalar multiplication using new double-base chain and point halving
The fast implementation of elliptic curve cryptosystems relies on the efficient computation of scalar multiplication. Based on the double-base chain representation of scalar using powers of 2 and 3, we propose a new representation with powers of 1⁄2 and 3 instead. Thus the efficient point halving operation can be incorporated in the new double-base chain to achieve fast scalar multiplication. E...
متن کاملElliptic Curves Scalar Multiplication Combining Mbnr with Point Halving
Elliptic curves scalar multiplication over some nite elds, attractive research area, which paid much attention by researchers in the recent years. Researchs still in progress to improve elliptic curves cryptography implementation and reducing its complexity. Elliptic curve point-halving algorithm proposed in [11] and later double-base chain [3] and step multi-base chain [19] are among e¢ cie...
متن کاملHyper-and-elliptic-curve cryptography
This paper introduces “hyper-and-elliptic-curve cryptography”, in which a single high-security group supports fast genus-2-hyperelliptic-curve formulas for variable-base-point single-scalar multiplication (e.g., Diffie–Hellman shared-secret computation) and at the same time supports fast elliptic-curve formulas for fixed-base-point scalar multiplication (e.g., key generation) and multi-scalar m...
متن کاملFast Scalar Multiplication in ECC using The Multi base Number System
As a generalization of double base chains, multibase number system is very suitable for efficient computation of scalar multiplication of a point of elliptic curve because of shorter representation length and hamming weight. In this paper combined with the given formulas for computing the 7Fold of an elliptic curve point P an efficient scalar multiplication algorithm of elliptic curve is propos...
متن کاملEfficient Quintuple Formulas for Elliptic Curves and Efficient Scalar Multiplication Using Multibase Number Representation
In the current work we propose two efficient formulas for computing the 5-fold (5P ) of an elliptic curve point P . One formula is for curves over finite fields of even characteristic and the other is for curves over prime fields. Double base number systems (DBNS) have been gainfully exploited to compute scalar multiplication efficiently in ECC. Using the proposed point quintupling formulas one...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2007 شماره
صفحات -
تاریخ انتشار 2007